- 1. The N-H bonds present in tetraphenylporphyrin leads to a single C₂ axis, a vertical reflection axis in the plane of the molecule, and no horizontal reflection axis. This is a relatively low degree of rotational symmetry that is forced by the presence of the 2 N-H bonds on opposite sides of the molecule. When these N-H bonds are emoved, the degree of rotational symmetry is increased because the metal-N bond in the metalloporphyrin (Ni-TPP) are more highly symmetrical. This induces a 1 ew axis of higher symmetry, a C₄ axis perpendicularly penetrating the plane of the molecule. This new C₄ axis will cause a change in point group. - 2. To get this molecule, replace benzaldehyde with 4-methoxy benzaldehyde. | 3. Cu-TPP 1 | Ni-TPP | |-----------------|--------| | 1 (1) Label the | 10 | | 11 d-orbital | 10 | | <u>10 10</u> | 11 11 | 4. Fluorescence is the emission of absorbed light at a different wavelength, especially the absorption of a high energy photon and the emission of that photon in a lower energy state. The $\pi \to \pi^*$ transition accounts for the fluorescence of TPP. When the metal binds, the $d_\pi \to \pi^*$ backbonding raises the ΔE , which causes a loss or reduction in the amount of emission encompassing fluorescence. The reason that Ni-TPP causes loss of fluorescence while Zn-TPP does not rests on the fact that there is less $d_\pi \to \pi^*$ backbonding at play in the zinc complex, preventing the increase in ΔE which causes loss of fluorescence. Because of this, the Zr (TPP) complex fluoresces just as the TPP molecule does. ## References: - 1) Marsh, Diane F. and Mink, Larry M., J. Chem. Ed., 1996, 73, 1188. - 2) Falvo, RaeAnne E. and Mink, Larry M., J. Chem. Ed., 1999, 76, 237. - 3) Mink, Larry M. and Saucedo, Laura. J. Chem. Ed., 2005, 82, 790.