Writer's WebWriting the Discussion Section

The Discussion should be written after the Results section so that you have a good idea of what the experiment has demonstrated. The discussion section should definitely have a statement of your expected findings (Pechenik, 86). This should include your hypothesis and a brief statement about why these types of results are expected. There should also be a comparison of how your actual results related to your expected findings (Pechenik, 86). Here, you should state whether or not your results supported or didn't support your hypothesis. In addition, the degree to which the evidence supported your hypothesis should be stated. For example, were the results completely supportive, or were there variances?

There should be an explanation of unexpected results (Pechenik, 86). When looking for possible explanations, consider the following:

A common mistake that many writers make is to blame themselves for the unexpected results. Unless you actually made a mistake following the methods of the experiment, and could not go back and correct it, do not make up such errors to explain the variances you observe. Think about and analyze the methods and equipment you used. Could something different have been done to obtain better results? Another possibility to consider is if the experiment was conducted under factors that were considerably different from those described in the manual. Be sure to include ideas on how to test these explanations (Pechenik, 86). Briefly explain a way to test these possible reasons for unexpected results. For example, if there is a problem with the methods, maybe the experiment should be reproduced with an added step. Also, mention what kinds of experiments still need to be conducted in order to obtain more information.

Examples

The following text includes two samples of discussion sections of a lab report on enzymes. Italicized words are links to explanations of why that particular part of the introduction is important and what makes the sentences appropriate or in need of improvement.

Sample 1: The results of the first experiment supported the hypothesis that the rate of conversion of the substrate would increase with increased amounts of enzyme. We observed that Tube 2, which had the highest concentration of enzyme, catecholase, also had the highest absorbance level. Since absorbance is used as a measure of reaction, the greatest rate of conversion of catechol and oxygen to benzoquinone was seen in Tube 2. The high ratio of enzyme to substrate caused the absorbance to grow rapidly and then level off (see Figure 1). The tubes with lower concentrations of enzyme had lower rates of conversion, as expected. However, there were some unexpected results in Tube 2. Between the times of around 6 minutes to 8 minutes there was decrease in the absorbance. One explanation of this observation is that the settling of the substrate to the bottom of the test tube caused the enzyme to become less efficient since it could not attack the substrate as well. The settling reduced the surface area of the substrate that could be attacked by the enzyme. The tube was inverted and the substrate was stirred up, which caused a rise in the absorbance. Further experiments, involving the constant stirring of the solution, could be performed to test this possibility.

The folding and combination of polypeptide chains forms the specific, three dimensional shape of an enzyme. This shape is extremely important to the enzyme's catalyzing efficiency and many environmental conditions can affect the shape of enzymes and thus their efficiency. A range of pH values exists for all enzymes, between which they reach their maximum catalyzing action. This range is usually between a pH of 6-8. pH levels outside this range can denature the enzyme, thereby decreasing its catalyzing ability. The results we obtained supported this assumption for the catecholase enzyme. The catecholase samples in tubes 3 and 4 had similar absorbance rates and, therefore, similar enzyme activities. However, the pH of 4 in tube 2 corresponded to low absorbance and low activity of the enzyme in that tube. This is due to the fact that the acidic environment is harmful to the enzyme, and denatures it. Catecholase, an enzyme found in fruits in nature, is well adapted for efficiency in nature. Its range of optimal pH levels, 6-8, allows it to function in the varying pH levels of soil and those caused by acid rain.

Sample 2: Enzymes catalyze reactions by lowering the activation energy of the reaction. Catecholase, an enzyme found in potatoes, converts catechol to benzoquinone in the presence of oxygen. It would be expected that more benzoquinone would be formed in the presence of a greater amount of catecholase. This hypothesis was supported by the results obtained. The most enzyme was placed in tube 2. The absorbance was also highest for this tube. This means that the most product was formed in this test tube. In accordance with this, tube four, which had the least amount enzyme, also had the least amount of absorption. There were some unexpected results, but this is most probably due to human error; the absorbance levels were probably read wrong.

Enzymes are affected by the environment. The pH level of the environment is one factor that can alter enzymes. The rate at which the enzyme form product is slowed or sped up depends on how close to the norm the environment is. In the second experiment, the pH of the medium was different in each of the test tubes. The general trend seen in these reactions was that the more acid added to the test tubes, the less product formed. The more acidic solution caused the enzyme to work less efficiently.

Explanations of the Example Links

Results: This author does a good job of answering the questions that should be addressed in a discussion. For example, in the very first sentence he stated what he expected to find and also whether or not the results he obtained supported or failed to support his hypothesis. This is a good, strong way to start a discussion section. It starts off with the facts of the experiment and then later on, the author can move on to his opinions. (return to Sample 1)

Absorbance: A good discussion includes good ideas and also exact and detailed support of these ideas. In addition to starting off well, the author also goes on to explain the specific results of the experiment that support his hypothesis. This is what defines the strength of his discussion section. (return to Sample 1)

Explanation: After his explanation he presents the unexpected results and discusses possible reasons for this data. The author's explanation of possible reasons for unexpected results is good because it shows that he thought about the problems. He does not blame himself for the unexpected. Instead, he considers the methods used, presents a possible explanation, and then justifies his ideas. (return to Sample 1)

Catalyze: This author does a good job outlining his discussion; however, he is lacking the specifics to make a good discussion. The first two sentences are better placed in the introduction. However, he does state his expectations and whether or not his results supported these expectations. He could have made this part better by stating this more authoritatively, for example: "It was expected," and not, "It would be expected that." (return to Sample 2)

Unexpected results: The biggest problem this author had was explaining the unexpected results. He blamed himself, saying he read the equipment wrong and passed off the unexpected results as human error. (return to Sample 2)

Enzymes: This author does not develop his argument enough. One example of this is the affects harsh environmental factors have on enzymes. He could have stated how the acidity caused the enzymes to denature, thus creating less efficiency. (return to Sample 2)

All citations from Pechenik, Jan A. A short guide to writing about Biology. pp. 54-102, Tufts University: Harper Collins College Publishers. 1993.

 

Back to "Writing the Discussion Section" or the Biology main page.
Copyright Info